Research Methods and Objectives
The concept of extracellular vesicles (EVs) has drastically changed from the initial non-functional debris to the current of key mediators of paracrine signalling. The cargoes of EVs comprise all kinds of macromolecules, and recent evidence has demonstrated the presence of long non-coding RNAs (lncRNAs) in such vesicles. These RNA molecules have numerous potential regulatory functions and results obtained so far guide us to presume a determinant role in vascular cell differentiation, proliferation and repair. Besides, the increasing data emerging in the field are significantly changing the way in which we interpret molecular mechanisms driving cardiovascular diseases and offers a brand new set of molecular targets for therapy. For all these reasons, study of lncRNAs in vascular biology and disease is state-of-the-art.
For imaging EV transfer among vascular cells, we are using a pioneer approach based on Cre-loxP recombination which results in a fluorescent colour switch of cells upon EV uptake. The lncRNAs present in EVs are being analysed by RNA-Seq. Mechanistic insight of enriched lncRNAs in EVs will be evaluated using gain- and loss-of function approaches in vascular cells using lentiviral vectors and GapmeRs/siRNAs, respectively. Integration of all these analyses will provide key information to define implications of EV-mediated delivery of lncRNA for vascular repair and regeneration.

Principal Investigator, Co-Investigators, Other researchers
MSCA-Individual Fellowship 2016
Supervisor: Prof Andrew Baker